Widerstandspressschweißen

Hier ist im Allgemeinen keine Zufuhr eines Zusatzwerkstoffes notwendig. Hierzu zählen:

  • Widerstandspunktschweißen
  • Widerstandsbuckelschweißen
  • Widerstandsrollennahtschweißen
  • Widerstandsstumpfschweißen
  • Kondensator-Impulsschweißen
  • Widerstandsbolzenschweißen

Die verwendeten Stromarten beim Widerstandspressschweißen sind:

Wechselstrom AC
Die klassische Widerstandsschweißtechnik verwendet Wechselstrom mit einer Frequenz von 50 Hz (oder 60 Hz). Dieser kann einfach mittels entsprechend leistungsstarker Transformatoren aus dem Netz erzeugt werden. Für die meisten Anwendungen ist diese Stromart gut geeignet.

Gleichstrom (DC)
Um eine rasche und gleichmäßige Einbringung der Energie zu gewährleisten, wird auch Gleichstrom verwendet. Dessen Erzeugung ist jedoch aufwändiger und damit teurer. An DC-Quellen unterscheidet man hauptsächlich:

  • Einphasengleichrichter (selten, schlechte Qualität des Gleichstroms)
  • Frequenzwandler (heute kaum noch üblich, können je nach Einstellung DC-Impulse oder Niederfrequenz erzeugen → dann AC)
  • Dreiphasengleichrichtermaschinen, mit einem dreiphasigen Schweißtransformator und dreiphasigem Gleichrichter
  • Inverteranlagen (auch: MF = Mittelfrequenz-Anlagen genannt), üblicherweise mit Gleichspannungszwischenkreis und 1000 Hz Taktfrequenz des Wechselrichters (vereinzelt auch mit höheren Frequenzen, bis 20 kHz - dann HF = Hochfrequenz-Anlagen genannt) und Gleichrichtung am Ausgang des MF-Transformators. Bei höheren Invertertaktfrequenzen ist ein schnellerer Regeleingriff der Schweißstromregelung möglich.

Energiebilanz am Schweißpunkt
Zu Schweißbeginn überwiegen die Kontaktwiderstände, insbesondere jene zwischen den einzelnen Bauteilen. Der Aufheizprozess beginnt zuerst an den Kontaktstellen der Bauteile zueinander unter den Elektroden und zwischen Bauteil bzw. Elektrode. Mit steigender Temperatur überwiegen die Materialwiderstände. Es bildet sich die typische Schweißlinse.

Nebenschluss
Ein Teil des anliegenden Stroms kann durch sogenannten Nebenschluss für den eigentlichen Schweißprozess verloren gehen. Der Strom fließt nicht nur durch die aufzuschmelzende Schweißlinse, sondern auch daran vorbei.
Durch geeignete Wahl der Schweißpunktabstände kann der Nebenschlusseffekt hierbei verschwindend gering gehalten werden. Ist dies nicht möglich, so muss der anliegende Strom entsprechend erhöht werden, damit der erforderliche Schweißpunktmindestdurchmesser erreicht wird.
Auch beim einseitigen Widerstandspunktschweißen tritt Nebenschluss auf. Verringern lässt sich bei dieser Schweißart der Nebenschlusseinfluss mittels einer Schweißanordnung „Bauteil mit geringer Wandstärke - Bauteil mit größerer Wandstärke - Unterkupfer“.

Arbeitsschutz
Alle Widerstandsschweißverfahren arbeiten mit geringen Spannungen (unterhalb der maximal zulässigen Berührungsspannung) und hohen Strömen. Deshalb ist ein direktes Berühren der schweißstromführenden Teile und der Werkstücke während der Schweißung grundsätzlich ungefährlich.
Gefahren beim Widerstandsschweißen können entstehen durch Schweißspritzer: aus der Schweißstelle herausgespritztes schmelzflüssiges Schweißgut (dabei handelt es sich nicht um elektrische Funken)

Kraftwirkung:

  • Möglichkeit der Quetschung der Hände im Bereich der Elektroden und Elektrodenarme
  • Lärmemission durch Aufsetzen der Elektroden auf das Schweißgut und durch Ausblasen von Druckluft beim Betätigen druckluftbetriebener Krafterzeugungssysteme
  • Dämpfe von organischen Beschichtungen auf dem Schweißgut.


Aus diesen Gründen sind in der Regel Augenschutz (Schutzbrille oder Schutzschirm), Gehörschutz und ggf. Handschutz vorgeschrieben.

In unmittelbarer Nähe zu Widerstandsschweißeinrichtungen treten während der Schweißung starke Magnetfelder auf. In der Regel sind Arbeitsplätze an Widerstandsschweißeinrichtungen mit dem Verbotszeichen „Verbot für Personen mit Herzschrittmacher“ und den Warnzeichen „Warnung vor magnetischem Feld“ bzw. (fälschlicherweise) „Warnung vor elektromagnetischem Feld“ gekennzeichnet. Dies geschieht oft aus Vorsorgegründen und ist nicht zwingend Zeichen einer tatsächlichen Gefährdung. Ob für Träger aktiver Implantate wirklich eine Gefahr besteht oder eine Weiterbeschäftigung möglich ist, ist im Einzelfall zu prüfen.